• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Fakülteler
  • Mühendislik Fakültesi
  • Elektrik Elektronik Mühendisliği
  • MF - EEM Makale Koleksiyonu
  • View Item
  •   DSpace Home
  • Fakülteler
  • Mühendislik Fakültesi
  • Elektrik Elektronik Mühendisliği
  • MF - EEM Makale Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A novel deep network architecture for reconstructing RGB facial images from thermal for face recognition

Thumbnail

View/Open

Yayıncı Sürümü - Makale (1.244Mb)

Date

2019

Author

Anbarjafari, Gholamreza
Litvin, Andre
Nasrollahi, Kamal
Escalera, Sergio
Ozcinar, Cagri
Moeslund, Thomas B.

Metadata

Show full item record

Citation

Litvin, A., Nasrollahi, K., Escalera, S., Ozcinar, C., Moeslund, T. B., & Anbarjafari, G. (September 30, 2019). A novel deep network architecture for reconstructing RGB facial images from thermal for face recognition. Multimedia Tools and Applications : an International Journal, 78, 18, 25259-25271.

Abstract

This work proposes a fully convolutional network architecture for RGB face image generation from a given input thermal face image to be applied in face recognition scenarios. The proposed method is based on the FusionNet architecture and increases robustness against overfitting using dropout after bridge connections, randomised leaky ReLUs (RReLUs), and orthogonal regularization. Furthermore, we propose to use a decoding block with resize convolution instead of transposed convolution to improve final RGB face image generation. To validate our proposed network architecture, we train a face classifier and compare its face recognition rate on the reconstructed RGB images from the proposed architecture, to those when reconstructing images with the original FusionNet, as well as when using the original RGB images. As a result, we are introducing a new architecture which leads to a more accurate network.

Source

MULTIMEDIA TOOLS AND APPLICATIONS

Volume

78

URI

https://doi.org/10.1007/s11042-019-7667-4
https://hdl.handle.net/20.500.11782/511

Collections

  • MF - EEM Makale Koleksiyonu [87]
  • Scopus İndeksli Yayınlar Koleksiyonu [577]
  • WoS İndeksli Yayınlar Koleksiyonu [517]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@HKU

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Hasan Kalyoncu Univesity || OAI-PMH ||

Hasan Kalyoncu Univesity, Gaziantep, Turkey
If you find any errors in content, please contact:

Creative Commons License
Hasan Kalyoncu Univesity Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@HKU: