• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Fakülteler
  • Mühendislik Fakültesi
  • Elektrik Elektronik Mühendisliği
  • MF - EEM Makale Koleksiyonu
  • View Item
  •   DSpace Home
  • Fakülteler
  • Mühendislik Fakültesi
  • Elektrik Elektronik Mühendisliği
  • MF - EEM Makale Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Going deeper in hidden sadness recognition using spontaneous micro expressions database

Thumbnail

View/Open

Yayıncı Sürümü - Makale (1.142Mb)

Date

2019-08

Author

Anbarjafari, Gholamreza
Gorbova, Jelena
Colovic, Milica
Marjanovic, Marina
Njegus, Angelina

Metadata

Show full item record

Citation

Gorbova, J., Colovic, M., Marjanovic, M., Njegus, A., & Anbarjafari, G. (August 30, 2019). Going deeper in hidden sadness recognition using spontaneous micro expressions database. Multimedia Tools and Applications : an International Journal, 78, 16, 23161-23178.

Abstract

Recognition of facial micro-expressions (MEs), which indicates conscious or unconscious suppressing of true emotions, is still a challenging task in the affective computing and computer vision. There are two main reasons for that: First, the lack of spontaneous MEs databases, preferably focused on one emotion. So far, posed facial MEs databases were developed, and in the most cases, machines were trained on this posed MEs, which are stronger and more visible than spontaneous ones. Second, in order to achieve high recognition rate, deep learning structures are required that can achieve the best performance with very large number of data. To address these challenges, we make the following contributions: (i) extension of our MEs spontaneous database by adding new subjects; (ii) We analysed spontaneous MEs in long videos only for hidden sadness; (iii) We presented deeper analysis for automatic hidden sadness detection algorithm with deep learning architecture and compared results with standard machine learning techniques for hidden sadness detection. It is shown that with our method 99.08% recognition performance has been achieved observing only the eye region of the face.

Source

MULTIMEDIA TOOLS AND APPLICATIONS

Volume

78

Issue

16

URI

https://doi.org/10.1007/s11042-019-7658-5
https://hdl.handle.net/20.500.11782/518

Collections

  • MF - EEM Makale Koleksiyonu [87]
  • Scopus İndeksli Yayınlar Koleksiyonu [566]
  • WoS İndeksli Yayınlar Koleksiyonu [507]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@HKU

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Hasan Kalyoncu Univesity || OAI-PMH ||

Hasan Kalyoncu Univesity, Gaziantep, Turkey
If you find any errors in content, please contact:

Creative Commons License
Hasan Kalyoncu Univesity Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@HKU: