• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@HKÜ
  • Fakülteler
  • Mühendislik Fakültesi
  • Elektrik Elektronik Mühendisliği
  • MF - EEM Makale Koleksiyonu
  • View Item
  •   DSpace@HKÜ
  • Fakülteler
  • Mühendislik Fakültesi
  • Elektrik Elektronik Mühendisliği
  • MF - EEM Makale Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Classification of Alzheimer's Disease and Prediction of Mild Cognitive Impairment Conversion Using Histogram-Based Analysis of Patient-Specific Anatomical Brain Connectivity Networks

Thumbnail

View/Open

Makale Dosyası (2.284Mb)

Access

info:eu-repo/semantics/embargoedAccess

Date

2017

Author

Anbarjafari, Gholamreza
Beheshti, Iman
Maikusa, Norihide
Daneshmand, Morteza
Matsuda, Hiroshi
Demirel, Hasan

Metadata

Show full item record

Citation

Beheshti, I., Maikusa, N., Daneshmand, M., Matsuda, H., Demirel, H., Anbarjafari, G., & Japanese-Alzheimer’s Disease Neuroimaging Initiative. (January 01, 2017). Classification of Alzheimer's Disease and Prediction of Mild Cognitive Impairment Conversion Using Histogram-Based Analysis of Patient-Specific Anatomical Brain Connectivity Networks. Journal of Alzheimer's Disease : Jad, 60, 1, 295-304.

Abstract

In this study, we investigated the early detection of Alzheimer's disease (AD) and mild cognitive impairment (MCI) conversion to AD through individual structural connectivity networks using structural magnetic resonance imaging (sMRI) data. In the proposed method, the cortical morphometry of individual gray matter images were used to construct structural connectivity networks. A statistical feature generation approach based on histogram-based feature generation procedure was proposed to represent a statistical-pattern of connectivity networks from a high-dimensional space into low-dimensional feature vectors. The proposed method was evaluated on numerous samples including 61 healthy controls (HC), 42 stableMCI (sMCI), 45 progressive-MCI (pMCI), and 83 AD subjects at the baseline from the J-ADNI data-set using support vector machine classifier. The proposed method yielded a classification accuracy of 84.17%, 70.38%, and 61.05% in identifying AD/HC, MCIs/HCs, and sMCI/pMCI, respectively. The experimental results show that the proposed method performed in a comparable way to alternative methods using MRI data.

Source

JOURNAL OF ALZHEIMERS DISEASE

Volume

60

Issue

1

URI

https://doi.org/10.3233/JAD-161080
https://hdl.handle.net/20.500.11782/734

Collections

  • MF - EEM Makale Koleksiyonu [97]
  • Scopus İndeksli Yayınlar Koleksiyonu [609]
  • WoS İndeksli Yayınlar Koleksiyonu [664]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@HKÜ

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Hasan Kalyoncu Univesity || OAI-PMH ||

Hasan Kalyoncu Univesity, Gaziantep, Turkey
If you find any errors in content, please contact:

Creative Commons License
Hasan Kalyoncu Univesity Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@HKÜ: