Carbohydrate antigen 19-9 electrochemical immunosensor based on 1D-MoS$_2$ nanorods/LiNb$_3$O$_8$ and polyoxometalate-incorporated gold nanoparticles

Mehmet Lütfi Yolaa,,, Necip Atarb

a Hasan Kalyoncu University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Gaziantep, Turkey
b Pamukkale University, Faculty of Engineering, Department of Chemical Engineering, Denizli, Turkey

ABSTRACT

The diagnosis of disease and the monitoring of patient in cancer research are related to biomarkers. Carbohydrate antigen 19-9 (CA 19-9) as the main tumor marker is necessary for digestive tract associated cancers. In this study, 1D-MoS$_2$ nanorods/LiNb$_3$O$_8$ (1D-MoS$_2$ NRs/LNO) as signal amplification and polyoxometalate-incorporated gold nanoparticles (AuNPs@POM) as sensor platform were prepared and the electrochemical immunosensor application was conducted based on 1D-MoS$_2$ NRs/LNO and AuNPs@POM for CA 19-9 detection. After the preparation of AuNPs@POM nanocomposite, primer antibody immobilization was conducted via amino-gold affinity between primer antibody and AuNPs@POM nanocomposite. After that, strong π-π and electrostatic interactions between seconder antibody and 1D-MoS$_2$ NRs/LNO provided the successful conjugation of seconder antibody. The physicochemical characterizations including scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD) were performed for electrochemical CA 19-9 immunosensor. Furhermore, to assess the electrochemical performance of the immunosensor, cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) techniques were performed. The quantification limit (LOQ) and the detection limit (LOD) values were obtained as 0.10 µU mL$^{-1}$ and 0.030 µU mL$^{-1}$, respectively. This immunosensor having high selectivity, stability and reusability creates a novel chance for clinical immunoassays.

1. Introduction

CA 19-9 was found using monoclonal antibody against human colorectal carcinoma cell line as a tumor-associated carbohydrate antigen [1]. It is widely accepted as a useful tumor marker in the diagnosis and treatment of cancer patients. This antigen has a carbohydrate structure as a sialyl derivative of Lacto-N-fucopentaose II, which is the hapten of human blood group Lewis antigen. This antigen is found in small amounts in human epithelium [2]. However, this antigen is produced more and begins to appear in blood and secretions with the formation of carcinoma. CA 19-9 is usually found in the serum of patients with gastrointestinal carcinoma. Especially, it is seen in pancreatic and biliary tract carcinomas. It is frequently shown in many adenocarcinoma tissues in immunohistochemical studies. Although it is known that there may be an increase in CA 19-9 level in benign diseases, values higher than 1000 U mL$^{-1}$ are indicative of a 99% malignant condition [3]. CA 19-9’s existence is known in normal kidney, renal tubules and pelvic mucosa. In addition, it is reported that its level increases in patients with pancreatic cancer. Thereby, CA 19-9’s selective determination in low levels can be favorable to clinical diagnoses in patients. Up to now, several methods have been presented for the determination of CA 19-9 such as chromatography and photoelectrochemical immunosassays [4]. However, these techniques are not useful owing to the time-consuming sample preparation procedures.

Early diagnosis of cancer increases the chance of treatment. Today, many types of cancer can be diagnosed after the whole body has metastasized. There is an urgent diagnosis method need for cancer determination. Biosensor technology plays an important role at this point. They are devices designed to identify a specific biological analyte/biomarker and convert it into a signal that can be analyzed [5-10].

* Corresponding author.
E-mail address: mlutfi.yola@hku.edu.tr (M.L. Yola).
immunosensors are designed to generate an antibody-antigen complex that causes physical change in signal. Electrodes, membranes, piezoelectric materials or optically active surface materials are sufficiently sensitive for direct immunosensor construction [10,11]. For example, ZnO quantum dot labeled immunosensor was prepared for CA 19-9 detection [12]. The immobilization process was performed by electrostatic forces based on ZnO isoelectric point and a linearity of 0.1–180.0 U mL⁻¹ with LOD of 0.04 U mL⁻¹ was obtained. In addition, fluorescence immunosay based on carbon quantum dots/AuNPs nano-composite was developed and a linearity of 0.01–350.0 U mL⁻¹ with LOD of 0.007 U mL⁻¹ was obtained [13]. Finally, bimetallic CeO₂/FeO₃@mC₃O₄ based electrochemical immunosensor for sensitive detection of CA 19-9 was prepared. The antibody was incorporated to CeO₂/FeO₃@mC₃O₄ by chemical absorption and the immunosensor showed a low LOD of 10.0 nM [3].

POMs as an inorganic compound have significant applications such as biochemistry [14] and sensor [15]. Especially, POMs can be used as reducing and stabilizing agents in aqueous solutions, suggesting the development of eco-friendly material synthesis [16]. Moreover, POMs’ multi-electron redox ability provided the synthesis of noble metal nanoparticles [17,18]. Up to now, common UV irradiation method was applied to POM-incorporated metal NPs synthesis [19]. In addition, extra several approaches were presented for reduction of the metal precursor. Ultrasonication synthesis has attracted attention as scalable method for metal NPs synthesis, whereby the chemical effects of ultrasonic irradiation are tailored owing to the acoustic cavitation [20]. In this process, high temperature, pressure and cooling rates are significant conditions for metal NPs@POM [21]. Molybdenum sulfide (MoS₂) as layered transition metal dichalcogenide facilitates electron transfer owing to its abundant active edge sites [22]. Only few studies were presented about one-dimensional MoS₂ (1D-MoS₂) in comparison with two-dimensional MoS₂ for catalytic or photocatalytic applications [23]. For example, 1D-MoS₂ nanosheet incorporated Ag₃MoO₉ microrods were prepared for catalytic oxidation of levofloxacin [24]. Recently, the excellent electrochemical performance of niobium was investigated [25]. Because of this, novel niobium based compounds were prepared [26,27]. Especially, niobium based oxides have been used frequently due to its improved electrochemical performances [28].

Herein, it was aimed to develop a novel sandwich-type electrochemical immunosensor based on 1D-MoS₂ nanorods/LiNbO₃ as signal amplification and polyoxometalate-incorporated gold nanoparticles as sensor platform to be utilized for CA 19-9 detection. Ultrasonication synthesis of AuNPs@POM nanocomposite was successfully performed and primer antibody immobilized to AuNPs@POM nanocomposite was conducted via amino-gold affinity. Then, 1D-MoS₂ NS/LNO was synthesized with high yield without waste formation. After the conjugation of seconder antibody to 1D-MoS₂ NS/LNO via π-π and electrostatic interactions, the sandwich-type electrochemical immunosensor was prepared by antibody-antigen interactions. Finally, electrochemical CA 19-9 immunosensor with fast, sensitive, environmentally friendly and low-cost suggests a pathway for clinical applications.

2. Experimental

2.1. Materials

CA 19-9, CA 19-9 primary antibody (anti-CA 19-9-Ab), CA 19-9 secondary antibody (anti-CA 19-9-Ab₂), carbohydrate antigen 24-2 (CA 242), carbohydrate antigen 125 (CA 125), prostate-specific antigen (PSA), bovine serum albumin (BSA), sodium molybdate dihydrate (Na₂MoO₄·2H₂O), thiourea (CH₄CNSH₂), lithium hydroxide monohydrate (LiOH·H₂O), niobium pentoxide (Nb₂O₅), polyoxometalate (H₃PMO₁₂O₄₀, POM), gold(III) chloride trihydrate (HAuCl₄·3H₂O), sodium citrate (Na₃C₆H₅O₇·2H₂O) were purchased from Sigma-Aldrich. As supporting electrolyte and dilution buffer, 0.1 M phosphate-buffered saline (PBS) solution at pH of 7.0 was preferred.

2.2. Instruments

The surface morphologies of samples were investigated both by ZEISS EVO 50 SEM and JEOL 2100 TEM. The XRD patterns were recorded via Rigaku X-ray diffractometer using Cu-Kα radiation at λ = 0.154 nm. The XPS analysis was performed by PHI 5000 Versa Probe spectrometer. Furthermore, Gamry Reference 600 work-station (Gamry, USA) was used to perform electrochemical characterization techniques including CV, EIS and DPV.

2.3. Ultrasonication synthesis of AuNPs and AuNPs@POM nanocomposite

AuNPs was prepared by using HAuCl₄·3H₂O and Na₂C₂H₇O₇ as reducing agent according our previous paper [29].

The ultrasonic synthesis method was applied to the preparation of AuNPs@POM nanocomposite with mol ratio of AuNPs:POM (1:1) during 45 min. After the preparation of HAuCl₄·3H₂O aqueous solution (2.0 mM, 20.0 mL), HAuCl₄·3H₂O aqueous solution was transferred into H₃PMo₁₂O₄₀ (POM) aqueous solution (2.0 mM, 40.0 mL) at 25 °C. After vigorous stirring, n-propanol (2.0 mL) was added into the dispersion. Then, the dispersion was transferred into Dewar cell (50.0 mL) and subjected to ultrasonication at acoustic power of 20 W. After sonoreaction, the colour of the solution converted into red, providing the formation of AuNPs. Thus, AuNPs@POM nanocomposite was stored at 25 °C [30].

2.4. AuNPs@POM/GCE as electrochemical sensor platform with anti-CA 19-9-Ab₁ and antigen CA 19-9 immobilizations

After the cleaning process of glassy carbon electrodes (GCEs) with 0.1 μm and 0.05 μm alumina slurries, respectively for 30 min, the alumina remains were eliminated by using acetonitrile and GCEs were dried at 25 °C under argon gas. After the dropping of AuNPs@POM dispersion (20.0 μL) on GCE, infrared heat lamp was applied to remove the solvent. Hence, GCE modified with AuNPs@POM electrode was tagged as AuNPs@POM/GCE.

After 100.0 μL mL⁻¹ anti-CA 19-9-Ab₁ dispersion (30.0 μL) was prepared in 0.1 M PBS (pH 7.0), the prepared primer antibody dispersion was dropped on AuNPs@POM/GCE and left at 37.0 °C for 25 min. anti-CA 19-9-Ab₁/AuNPs@POM/GCE was developed thanks to amino-gold affinity between primer antibody and AuNPs [31]. After that, BSA (2.0% w/v) was incubated on anti-CA 19-9-Ab₁/AuNPs@POM/GCE at 37.0 °C for 25 min to remove non-specific interactions BSA/anti-CA 19-9-Ab₁/AuNPs@POM/GCE). The CA 19-9 immobilizations were carried out on BSA/anti-CA 19-9-Ab₁/AuNPs@POM/GCE by dropping of each CA 19-9 with different concentration on electrode surfaces for 25 min at 37.0 °C and the antibody-antigen affinity provided CA 19-9/BSA/anti-CA 19-9-Ab₁/AuNPs@POM/GCE. Lastly, CA 19-9/BAs/anti-CA 19-9-Ab₁/AuNPs@POM/GCE was incubated in 0.1 M PBS (pH 7.0) to remove non-interacting antigen proteins.

2.5. Preparation of LNO, 1D-MoS₂ nanorods/LiNbO₃ (1D-MoS₂ NRS/l LNO) and 1D-MoS₂ nanosheets/LiNbO₃ (1D-MoS₂ NS/LNO) composites

LNO powders were prepared by a calcination process. Nb₂O₅ (4.0 mmol) was dispersed in LiOH·H₂O (40.0 mL) (the mole ratio of Li: Nb = 8:1) under vigourous stirring for 90 min. Then, the dispersion was transferred into a Teflon stainless autoclave at 200 °C for 20 h. After the centrifugation at 10000 rpm, the product was calcined from 400 to 850 °C for 90 min with a rate of 10 °C/min. After cooling up to 25 °C, LNO powders were collected.

Na₂MoO₄·2H₂O (25.0 mg) and CH₃CSNH₂ (15.0 mg) were dissolved in ultra-pure water (100.0 mL) under vigourous stirring. Then, the...
dispersion was diluted with ultra-pure water to 50.0 mL. After the addition of LNO (75.0 mg) into this dispersion, the suspension was transferred into a Teflon stainless autoclave at 200 °C for 20 h. After the washing of the prepared material with ultra-pure water:ethanol (1:1), the product was dried at 50 °C under vacuum. Thus, 0.5 wt% 1D-MoS_2 nanorods/LNO was tagged as 0.5 wt% 1D-MoS_2 NRs/LNO. In addition, 1D-MoS_2 NRs/LNO including different amounts of 1D-MoS_2 (1.0, 1.5, 2.0 and 2.5 wt% of 1D-MoS_2 NRs) were prepared with the change of Na_2MoO_4·2H_2O’s amount.

For 1D-MoS_2 NS preparation, Na_2MoO_4·2H_2O (0.50 g) and CH_3CSNH_2 (1.0 g) were firstly dissolved in ultra-pure water (100.0 mL) under vigorous stirring. Then, the suspension was transferred into a Teflon stainless autoclave at 200 °C for 20 h. After washing treatment, 1D-MoS_2 NS powders were obtained. After that, 1D-MoS_2 NS powder (1.0 mg) and LNO (100.0 mg) were together grinded for 2 h in mortar including ethanol (1.0 mL). After ethanol evaporation, 1.0 wt% 1D-MoS_2 NS/LNO was prepared as a reference in comparison with 1D-MoS_2 NRs/LNO samples.

2.6. 1D-MoS_2 NRs/LNO as signal amplification with anti-CA 19-9-Ab
t conjugation

After 100.0 μU mL^{-1} anti-CA 19-9-Ab dispersion (30.0 μL) was prepared in 0.1 M PBS (pH 7.0), this dispersion was interacted with 1D-MoS_2 NRs/LNO (30.0 μL, 50.0 mg mL^{-1}) dispersion under magnetic stirring at 37.0 °C for 25 min. The centrifugation was performed at 5000

Scheme 1. Preparation procedure of electrochemical CA 19-9 immunosensor.
rpm during 20 min and the obtained 1D-MoS\(_2\) NRs/LNO/anti-CA 19-9-Ab\(_2\) was preserved in pH 7.0, 0.1 M PBS.

2.7. Electrochemical characterizations

The sandwich-type electrochemical immunosensor was prepared by antibody-antigen affinity between 1D-MoS\(_2\) NRs/LNO/anti-CA 19-9-Ab\(_2\) and CA 19-9/BSA/anti-CA 19-9-Ab\(_2\)/AuNPs@POM/GCE. 1D-MoS\(_2\) NRs/ LNO/anti-CA 19-9-Ah\(_2\) dispersion (30.0 \(\mu\)l, 25.0 mg mL\(^{-1}\)) was dropped on CA 19-9/BSA/anti-CA 19-9-Ah\(_2\)/AuNPs@POM/GCE at 37.0 \(^\circ\)C for the immune reaction time of 25 min. Thus, the developed sandwich-type electrochemical immunosensor was tagged as 1D-MoS\(_2\) NRs/LNO/anti-CA 19-9-Ah\(_2\)/CA 19-9/BSA/anti-CA 19-9-Ah\(_2\)/AuNPs@POM/GCE.

The prepared sandwich-type immunosensor for CA 19-9’s recognition was stored in pH 7.0, 0.1 M PBS (2.0 mL), 0.1 M PBS (pH 7.0, 2.0 mL) containing 1.0 mM H\(_2\)O\(_2\) as a redox probe was used for electrochemical performance measurements. Differential pulse voltammograms (DPVs) were recorded at +0.30 V in an enclosed cabinet. Briefly, the preparation procedures were shown on Scheme 1, including in 1D-MoS\(_2\) NRs/LNO, AuNPs@POM/GCE, the immobilizations of proteins and the final electrochemical immunosensor development.

2.8. Sample preparation

CA 19-9 free plasma samples were supplied from Blood Bank in TURKEY. Sample preparation protocol was explained in detail on Supplementary Data [5].

3. Results and discussion

3.1. Principle of electrochemical CA 19-9 immunosensor based on 1D-MoS\(_2\) NRs/LNO and AuNPs@POM

In this study, 1D-MoS\(_2\) NRs/LNO as signal amplification and AuNPs@POM as sensor platform/surface were prepared for immunosensor application. Especially, the sensor platform having high stability was developed owing to negative surface charge thanks to PMo\(_{12}\) polyonians on AuNPs. Thus, obvious electrostatic repulsions result in less coagulation, providing stable sensor surface development [32]. Another reason for this high stability was the formation of stable hydrogen bonding between hydroxyl groups on H\(_2\)O and PMo\(_{12}\) polyonians on AuNPs. In addition, there are two important factors corresponding to PMo\(_{12}\) polyonians’ formation on AuNPs surface. (i) the increase of mass transfer because of acoustic shock waves and (ii) surface corrosion. Thus, the dominant factor can adjust PMo\(_{12}\) polyonians’ formation on AuNPs. In generally, the first factor enables the formation of PMo\(_{12}\) polyonians, however, second factor determines the desorption of PMo\(_{12}\) polyonians from AuNPs surface. We can say that there is equal effect between the two factors in this study. Hence, AuNPs@POM as sensor platform/surface generally had two aims including the obtainment of the binding sites for primer antibody via amino-gold affinity and the increase of surface conductivity.

The porous LNO formation was corresponded to Li element’s local enrichment, providing the connections of LNO particles [33]. Li enrichment area as LNO particles’ junction site was composed of low formation energy, causing the direct growth of 1D-MoS\(_2\) NRs. During direct growth of 1D-MoS\(_2\) NRs, the incorporation of oxygen into sulfur sites on 1D-MoS\(_2\) NRs and crystal defects occured as a result of lattice fringes (0.67 nm) of 1D-MoS\(_2\) NRs in comparison with bulk MoS\(_2\) (0.61 nm) [34,35]. After that, the easy incorporation of seconder CA 19-9 antibody was conducted by strong \(\pi\)-\(\pi\) and electrostatic interactions between seconder antibody and 1D-MoS\(_2\) NRs [36].

H\(_2\)O\(_2\) as a redox probe was used in electrochemical immunosensor application to monitor its conversion into O\(_2\) at about +0.30 V [31].

3.2. Characterizations of LNO, 1D-MoS\(_2\) NRs/LNO and 1D-MoS\(_2\) NS/LNO

Fig. 1 indicated XRD patterns of LNO and 1D-MoS\(_2\) NRs/LNO including different amounts of 1D-MoS\(_2\). According to Fig. 1, the characteristic diffraction peaks at 2\(\theta\) = 21.57\(^\circ\), 24.29\(^\circ\), 29.95\(^\circ\), 30.94\(^\circ\), 35.77\(^\circ\), 51.37\(^\circ\) and 53.15\(^\circ\) on the whole samples were corresponded to (011), (400), (410), (212), (214) and (14) crystalline planes of LNO, respectively. However, XRD patterns of 1D-MoS\(_2\) NRs/LNO could not show the characteristic peaks of MoS\(_2\) owing to low concentration of MoS\(_2\) on LNO’s surface [37,38]. Hence, HRTEM and XPS methods were used to show the presence of MoS\(_2\) on the samples. Raman spectra (Fig. S1A) were obtained for LNO, pristine MoS\(_2\) nanosheets (1D-MoS\(_2\) NS), 1.0 wt%1D-MoS\(_2\) NRs/LNO and 1.0 wt%1D-MoS\(_2\) NS/LNO. Raman peaks at 381 and 404 cm\(^{-1}\) were corresponded to low-energy E\(_2g\) and high-energy A\(_1g\) modes of 2H-MoS\(_2\) phase, respectively. In addition, the small peak at 335 cm\(^{-1}\) was attributed to photon mode (J\(_3\)) of metallic 1T-MoS\(_2\) phase [39]. Thus, 1D-MoS\(_2\) NS was composed of 1T and dominant 2H phases [39]. Nonetheless, after the preparation of 1.0 wt% 1D-MoS\(_2\) NS/LNO, no evident MoS\(_2\) phase was obtained for 1.0 wt%1D-MoS\(_2\) NS/LNO such as 1.0 wt%1D-MoS\(_2\) NRs/LNO with small MoS\(_2\) loading. Furthermore, Raman peaks of LNO were overlapped with that of MoS\(_2\) NS. The characteristic layered structure of 1D-MoS\(_2\) NS was also verified by SEM image (Fig. S1B).

CA 19-9 free plasma samples were supplied from Blood Bank in TURKEY. Sample preparation protocol was explained in detail on Supplementary Data [5].

3. Results and discussion

3.1. Principle of electrochemical CA 19-9 immunosensor based on 1D-MoS\(_2\) NRs/LNO and AuNPs@POM

In this study, 1D-MoS\(_2\) NRs/LNO as signal amplification and AuNPs@POM as sensor platform/surface were prepared for immunosensor application. Especially, the sensor platform having high stability was developed owing to negative surface charge thanks to PMo\(_{12}\) polyonians on AuNPs. Thus, obvious electrostatic repulsions result in less coagulation, providing stable sensor surface development [32]. Another reason for this high stability was the formation of stable hydrogen bonding between hydroxyl groups on H\(_2\)O and PMo\(_{12}\) polyonians on AuNPs. In addition, there are two important factors corresponding to PMo\(_{12}\) polyonians’ formation on AuNPs surface. (i) the increase of mass transfer because of acoustic shock waves and (ii) surface corrosion. Thus, the dominant factor can adjust PMo\(_{12}\) polyonians’ formation on AuNPs. In generally, the first factor enables the formation of PMo\(_{12}\) polyonians, however, second factor determines the desorption of PMo\(_{12}\) polyonians from AuNPs surface. We can say that there is equal effect between the two factors in this study. Hence, AuNPs@POM as sensor platform/surface generally had two aims including the obtainment of the binding sites for primer antibody via amino-gold affinity and the increase of surface conductivity.

The porous LNO formation was corresponded to Li element’s local enrichment, providing the connections of LNO particles [33]. Li enrichment area as LNO particles’ junction site was composed of low formation energy, causing the direct growth of 1D-MoS\(_2\) NRs. During direct growth of 1D-MoS\(_2\) NRs, the incorporation of oxygen into sulfur sites on 1D-MoS\(_2\) NRs and crystal defects occured as a result of lattice fringes (0.67 nm) of 1D-MoS\(_2\) NRs in comparison with bulk MoS\(_2\) (0.61 nm) [34,35]. After that, the easy incorporation of seconder CA 19-9 antibody was conducted by strong \(\pi\)-\(\pi\) and electrostatic interactions between seconder antibody and 1D-MoS\(_2\) NRs [36].

H\(_2\)O\(_2\) as a redox probe was used in electrochemical immunosensor application to monitor its conversion into O\(_2\) at about +0.30 V [31].
of 1.0 wt%1D-MoS$_2$ NRs/LNO (Fig. 2E), the lattice fringes of 1D-MoS$_2$ NRs was evaluated as 0.67 nm, indicating (0 0 2) plane of hexagonal MoS$_2$. Finally, the interplanar spacing (0.297 nm) of LNO particle was attributed to d-spacing of (4 1 0) crystal plane [42].

UV–vis spectroscopy (Fig. S3 A) was utilized to evaluate the optical properties of the prepared samples. LNO showed an absorption band below 400 nm and the absorption increased with loading with 1D-MoS$_2$ NRs. According to these results, 1D-MoS$_2$ NRs/LNO can increase ab-sorption ability with increase of 1D-MoS$_2$ NRs amount. In addition, PL spectra of LNO and 1.0 wt%1D-MoS$_2$ NRs/LNO were recorded at 250 nm excitation (Fig. S3B). LNO having high recombination of photo-generated charges showed the highest emission. However, the emission was quenched on 1.0 wt%1D-MoS$_2$ NRs/LNO, suggesting the easy electron transfer from LNO to 1D-MoS$_2$ NRs. Thus, this easy electron transfer could provide the enhancement of catalytic activity.

3.3. Characterizations of AuNPs@POM composite

XRD pattern (Fig. 3A) of AuNPs@POM composite demonstrated face-centered cubic structure of metallic gold nanoparticles and the peaks at 37.93°, 44.28°, 64.47° and 77.68° were corresponded to (1 1 1), (2 0 0), (2 2 0) and (3 1 1) planes [43,44]. According to Fig. 3A, the peak attributing to (1 1 1) plane was sharper than that of the other planes, suggesting predominant orientation of Au (1 1 1). In addition, the absence of XRD peaks corresponding to POM means the adsorption of POM on AuNPs surface without agglomeration [45]. FTIR spectra (Fig. 3B) were recorded to confirm the presence of AuNPs@POM composite. The absorption bands at 1065 cm$^{-1}$ and 965 cm$^{-1}$ were resulted from P–O and Mo–O$_6$ groups of pure polyoxometalate whereas these absorption peaks were observed on longer wavelengths at 1090 cm$^{-1}$ and 1022 cm$^{-1}$ on FTIR spectrum of AuNPs@POM composite. This situation showed the obvious interaction between POM and gold nanoparticles. The vibration peak at 880 cm$^{-1}$ corresponding to Mo–O$_6$–Mo group on FTIR spectrum of POM disappeared on AuNPs@POM composite [46]. In addition, the vibration peak at 800 cm$^{-1}$ attributing to Mo–O$_6$–Mo group on POM was observed at 620 cm$^{-1}$ on AuNPs@POM composite. Finally, the succesful synthesis of AuNPs@POM composite was confirmed by FTIR measurements.

Cyclic voltammograms (Fig. S4) were recorded for the electrochemical comparison of POM and AuNPs@POM composite. According to Fig. S4, a multi-electron reversible redox reaction was observed in DMF solution containing 1.0 M H$_2$SO$_4$. The electrochemical peaks at -0.02, $+0.16$ and $+0.38$ V were corresponded to POM’s redox behavior. Hence, the successful adsorption of POM on AuNPs surface without agglomeration was verified by CV.

Finally, TEM and SEM measurements were performed for
AuNPs@POM composite. According to Fig. 4A, irregular AuNPs on POM had a narrow size distribution. The average particle diameters of AuNPs were obtained as about 30–35 nm and the whole AuNPs was well dispersed owing to electrostatic repulsion thanks to PMo12 polyanions on AuNPs. In addition, Fig. 4B showed the uniform distribution of AuNPs in two-dimensional monolayer manner.

3.4. Electrochemical characterizations of sensor platform and signal amplification

First of all, CV measurements (Fig. 5A) were conducted in 1.0 mM [Fe(CN)6]4–/3– solution containing 0.1 M KCl to characterize the sensor platform. The unmodified GCE demonstrated small anodic and cathodic electrochemical signals (curve a). Due to AuNPs’ optical properties, a large surface area and electrical conductivity [47,48], the increase on electrical signals was observed (curve b). Lastly, more electrochemical signals were observed because of POMs’ multi-electron redox ability and synergistic effect between POM and AuNPs (curve c) [30]. Then, the immobilizations of anti-CA 19-9-Ab, BSA and CA 19-9 on AuNPs@POM/GCE decreased the electrochemical immunosensor’s performance owing to electron transfer blocking (curve d, curve e and curve f). Hence, the incubations of primer antibody, BSA and CA 19-9 on immunosensor platform were successfully conducted.

In addition, EIS measurements (Fig. 5B) were conducted by using different electrochemical sensor platform as CV measurements. According to EIS graphs of AuNPs/GCE (curve b) and AuNPs@POM/GCE (curve c), mass transfer resistances on the electrode surface decreased when bare GCE (curve a) was modified with AuNPs and AuNPs@POM. As in the CV experiments, when primer antibody (curve d), BSA (curve e) and CA 19-9 (curve f) were immobilized to the sensor platform, the electron transfer rate decreased.

EIS graphs (Fig. 5C) of various immunosensors including different signal amplification such as (a) LNO, (b) 1.0 wt%1D-MoS2 NS/LNO and (c) 1.0 wt%1D-MoS2 NRs/LNO were obtained. Thus, electron transfer rate at 1.0 wt%1D-MoS2 NS/LNO was faster than that of LNO owing to 1.0 wt%1D-MoS2 NS’ abundant active edge sites [22]. Due to the direct growth of 1D-MoS2 NRs on LNO, 1.0 wt%1D-MoS2 NRs/LNO (curve c) facilitated the electron transfer from LNO to 1D-MoS2 NRs in short distance in comparison with curve b. In addition, because of efficient separation of electrons and contact interface between LNO and 1D-MoS2 NRs, the electrochemical activity for CA 19-9 detection increased.

Finally, DPV responses of various immunosensors based on 1D-MoS2 NRs/LNO including different amounts of 1D-MoS2 were recorded. According to Fig. 5D, the electrochemical currents increased with the amounts of 1D-MoS2 NRs. Hence, as expected, the highest electrochemical currents were observed by using CA 19-9 electrochemical immunosensor based on 2.5 wt%1D-MoS2 NRs/LNO, AuNPs@POM/GCE as electrochemical sensor platform and 2.5 wt%1D-MoS2 NRs/LNO as signal amplification were used for subsequent immunosensor applications.

3.5. Optimization for electrochemical measurements

Detailed investigation was implemented for lighting up the effect of pH, immune reaction time, H2O2 and 2.5 wt%1D-MoS2 NRs/LNO/anti-CA 19-9-Ab solution concentration (Fig. S5).

3.6. Linearity range

The sensitivity and linearity range studies of the prepared immunosensor for CA 19-9 analysis were evaluated. According to Fig. 6, the electrochemical currents increased with CA 19-9 amounts. The calibration plot demonstrated a linearity between immunosensor responses and CA 19-9 concentration in the range of 0.10–10.0 µU mL−1 ($R^2 = 0.9989$). The regression equation was obtained as y (I, µA) = 0.4725x (CA 19-9 concentration, µU mL−1) + 0.0089 (inset of Fig. 6). The quantification limit (LOQ) and LOD values were obtained as 0.10 µU mL−1 and 0.030 µU mL−1, respectively, by the Eqs. (1) and (2):

$$LOQ = 10.0 \, S/m \tag{1}$$

$$LOD = 3.3 \, S/m \tag{2}$$

where S is the standard deviation of the intercept and m is the slope of the regression line. Table 1 showed the comparison features between the prepared immunosensor and the other analytical methods. Owing to 1D-MoS2 NRs’ active sites and porous LNO’s high surface area, LOD of the prepared immunosensor for CA 19-9 demonstrated a relatively low detection limit in comparison with the other materials/methods. Furthermore, the ultrasonic synthesis of AuNPs@POM nanocomposite and the hydrothermal synthesis of 1D-MoS2 NRs/LNO caused little waste generation, suggesting environmentally friendly immunosensor construction. Hence, this CA 19-9 immunosensor has potential practical applications for early diagnosis.

3.7. Recovery

Recovery values of CA 19-9 in the presence of 0.1 M PBS (pH 7.0) containing 1.0 mM H2O2 were listed on Table S1. These values were calculated by the Eq. (3) below:

$$Recovery = \frac{Found \, CA \, 19-9 \, \mu U \, mL^{-1}}{Real \, CA \, 19-9 \, \mu U \, mL^{-1}} \times 100 \% \tag{3}$$

According to Table S1, the close values to 100.00% showed that potential interferences had no important effects on CA 19-9 detection by the prepared immunosensor. In addition, the standard addition method (SAM) was applied the plasma samples and the calibration equation of SAM was obtained as y (I, µA) = 0.4794x (CA 19-9 concentration, µU mL−1)
The comparison of electrochemical CA 19-9 immunosensor with other reported techniques.

Table 1
The comparison of electrochemical CA 19-9 immunosensor with other reported techniques.

<table>
<thead>
<tr>
<th>Material/Method</th>
<th>Linear Range</th>
<th>LOD</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au/Pd-Gra/Thi</td>
<td>0.015–150.0 U ml⁻¹</td>
<td>0.006 U ml⁻¹</td>
<td>[49]</td>
</tr>
<tr>
<td>FeC₃O₄/NPs</td>
<td>0.008–100.0 U ml⁻¹</td>
<td>0.000032 U ml⁻¹</td>
<td>[50]</td>
</tr>
<tr>
<td>CeO₂/GO</td>
<td>0.001–5.0 U ml⁻¹</td>
<td>0.0005 U ml⁻¹</td>
<td>[1]</td>
</tr>
<tr>
<td>CNOₓ/GO</td>
<td>0.3–100.0 U ml⁻¹</td>
<td>0.12 U ml⁻¹</td>
<td>[51]</td>
</tr>
<tr>
<td>TiO₂NWs/Au/CdSe/ZnS</td>
<td>0.01–200.0 U ml⁻¹</td>
<td>0.003 U ml⁻¹</td>
<td>[4]</td>
</tr>
<tr>
<td>AgNPs/ZIF-67</td>
<td>0.0001–10 U ml⁻¹</td>
<td>310.0 µU ml⁻¹</td>
<td>[52]</td>
</tr>
<tr>
<td>CQDs/Au</td>
<td>0.01–350.0 U ml⁻¹</td>
<td>0.0070 U ml⁻¹</td>
<td>[13]</td>
</tr>
<tr>
<td>GeO₂/TeO₂@mC₃O₄</td>
<td>0.0001–10.0 U</td>
<td>10.0 µU ml⁻¹</td>
<td>[2]</td>
</tr>
<tr>
<td>Sandwich type immunosensor</td>
<td>0.1–10.0 µU ml⁻¹</td>
<td>0.030 µU ml⁻¹</td>
<td>This study</td>
</tr>
</tbody>
</table>

![Fig. 6. Concentration effect (from 0.10 to 10.0 µU ml⁻¹ CA 19-9) on immunosensor signals, Inset: Calibration curve for electrochemical CA 19-9 immunosensor.](image)

For selectivity studies (Fig. S6A) of electrochemical CA 19-9 immunosensor, five solution mixtures were separately prepared such as (i) 1.0 µU ml⁻¹ CA 19-9, (ii) 1.0 µU ml⁻¹ CA 19-9 + 10.0 µU ml⁻¹ CA 242, (iii) 1.0 µU ml⁻¹ CA 19-9 + 10.0 µU ml⁻¹ CA 125, (iv) 1.0 µU ml⁻¹ CA 19-9 + 10.0 µU ml⁻¹ PSA, (v) 1.0 µU ml⁻¹ CA 19-9 + 10.0 µU ml⁻¹ BSA. Then, the five electrochemical CA 19-9 immunosensors were separately prepared by using these solution mixtures. After that, these five electrochemical CA 19-9 immunosensors were applied to 1.0 mM H₂O₂ solution including in pH 7.0, 0.1 M PBS (2.0 mL) and 0.38% of relative standard deviation (RSD) was obtained, providing the high selectivity of electrochemical CA 19-9 immunosensor.

The stability tests (Fig. S6B) of electrochemical CA 19-9 immunosensor were performed at 25.0 °C during 6 weeks in the presence of 1.0 mM H₂O₂. According to Fig. S6B, the electrochemical current values were about 98.83% of first current signal and 0.81% of RSD for current signals was observed. Thereby, stable CA 19-9 immunosensor can be applied for clinical samples for a long time.

Finally, reusable electrochemical CA 19-9 immunosensor was evaluated in 1.0 mM H₂O₂ solution (Fig. S6C). 0.18% of RSD for current signals was obtained during 50 times usage of electrochemical CA 19-9 immunosensor. Hence, high reusability of electrochemical CA 19-9 immunosensor can be mentioned for subsequent clinical applications.

4. Conclusions

In conclusion, a novel electrochemical immunosensor based on 1D-MoS₂ nanorods/LiNb₂O₄ and AuNPs@POM was presented for carbohydrate antigen 19-9 (CA 19-9) detection. This developed immunosensor has some advantages such as simplicity, fast analysis, high selectivity, stability, accuracy and precision and showed a low sensitivity (LOD of 0.030 µU ml⁻¹). In addition, the close recovery values to mL⁻¹) + 0.1073. Especially, the close slopes between SAM and linear regression method confirmed successful analysis of CA 19-9 without the effect of other agents.

3.8. Selectivity, stability and reusability

![Fig. 5. (A) Cyclic voltammograms, (B) EIS graphs at (a) bare GCE, (b) AuNPs/GCE, (c) AuNPs@POM/GCE, (d) anti-CA 19-9-Ab/AuNPs@POM/GCE, (e) BSA/anti-CA 19-9-Ab/AuNPs@POM/GCE, (f) CA 19-9/ BSA/anti-CA 19-9-Ab/AuNPs@POM/GCE, (g) CVs of various immunosensors including different signal amplification such as (a) LNO, (b) 1.0 wt%1D-MoS₂ NS/LNO and (c) 1.0 wt%1D-MoS₂ NPs/LNO in 1.0 mM [Fe(CN)₆]³⁻ containing 0.1 M KCl. (C) EIS graphs of various immunosensors including different signal amplification such as (a) LNO, (b) 1.0 wt%1D-MoS₂ NPs/LNO and (c) 1.0 wt%1D-MoS₂ NPs/LNO in 1.0 mM [Fe(CN)₆]³⁻ containing 0.1 M KCl.](image)
100.00% in plasma samples provided a important bioanalytical method development for CA 19-9 determination. Hence, this study firstly indicated the application of a novel immunosensor for cancer disease diagnosis. Furthermore, low-cost and environmentally friendly immunosensor was prepared as an alternative detection method for the determination of malignant tumors.

CRediT authorship contribution statement

Mehmet Lütfi Yola: Supervision, Conceptualization, Writing - review & editing. **Necip Atar:** Data curation, Writing - original draft, Visualization, Investigation.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

Mehmet Lütfi YOLA would like to thank Turkish Academy of Sciences for their invaluable support in respect to The Young Scientists Award Programme, TÜBA-GEBIP (2019). The study was partially supported with this award.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.microc.2021.106643.

References

