• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@HKÜ
  • Fakülteler
  • Mühendislik Fakültesi
  • Elektrik Elektronik Mühendisliği
  • MF - EEM Makale Koleksiyonu
  • View Item
  •   DSpace@HKÜ
  • Fakülteler
  • Mühendislik Fakültesi
  • Elektrik Elektronik Mühendisliği
  • MF - EEM Makale Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ungulate Detection and Species Classification from Camera Trap Images Using RetinaNet and Faster R-CNN

Thumbnail

View/Open

Makale Dosyası (8.174Mb)

Access

info:eu-repo/semantics/openAccess

Date

MAR 2022

Author

Vecvanags, Alekss
Aktas, Kadir
Pavlovs, Ilja
Avots, Egils
Filipovs, Jevgenijs
Brauns, Agris
Done, Gundega
Jakovels, Dainis
Anbarjafari, Gholamreza

Metadata

Show full item record

Citation

Vecvanags, A., Aktas, K., Pavlovs, I., Avots, E., Filipovs, J., Brauns, A., Done, G., Lahmiri, S. (February 28, 2022). Ungulate Detection and Species Classification from Camera Trap Images Using RetinaNet and Faster R-CNN. Entropy, 24, 3.)

Abstract

Changes in the ungulate population density in the wild has impacts on both the wildlife and human society. In order to control the ungulate population movement, monitoring systems such as camera trap networks have been implemented in a non-invasive setup. However, such systems produce a large number of images as the output, hence making it very resource consuming to manually detect the animals. In this paper, we present a new dataset of wild ungulates which was collected in Latvia. Moreover, we demonstrate two methods, which use RetinaNet and Faster R-CNN as backbones, respectively, to detect the animals in the images. We discuss the optimization of training and impact of data augmentation on the performance. Finally, we show the result of aforementioned tune networks over the real world data collected in Latvia.

Source

ENTROPY

Volume

24

Issue

3

URI

https://doi.org/10.3390/e24030353
https://hdl.handle.net/20.500.11782/2638

Collections

  • MF - EEM Makale Koleksiyonu [146]
  • WoS İndeksli Yayınlar Koleksiyonu [857]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@HKÜ

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Hasan Kalyoncu Univesity || OAI-PMH ||

Hasan Kalyoncu Univesity, Gaziantep, Turkey
If you find any errors in content, please contact:

Creative Commons License
Hasan Kalyoncu Univesity Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@HKÜ: