Show simple item record

dc.contributor.authorYetkin-Çelikel, Ece
dc.date.accessioned2023-03-13T05:36:53Z
dc.date.available2023-03-13T05:36:53Z
dc.date.issued2021en_US
dc.identifier.citationYetkin-Çelikel, E. (2021). 2-absorbing δ-semiprimary Ideals of Commutative Rings. Kyungpook Mathematical Journal: Cilt, 61, s. 711-725.en_US
dc.identifier.issn12256951
dc.identifier.urihttps://hdl.handle.net/20.500.11782/3118
dc.description.abstractLet R be a commutative ring with nonzero identity, I(R) the set of all idealsof R and δ: I(R) → I(R) an expansion of ideals of R. In this paper, we introduce theconcept of 2-absorbing δ-semiprimary ideals in commutative rings which is an extensionof 2-absorbing ideals. A proper ideal I of R is called 2-absorbing δ-semiprimary idealif whenever a, b, c ∈ R and abc ∈ I, then either ab ∈ δ(I) or bc ∈ δ(I) or ac ∈ δ(I).Many properties and characterizations of 2-absorbing δ-semiprimary ideals are obtained.Furthermore, 2-absorbing δ1-semiprimary avoidance theorem is proved © Kyungpook Mathematical Journalen_US
dc.language.isoengen_US
dc.publisherKyungpook National Universityen_US
dc.relation.isversionof10.5666/KMJ.2021.61.4.711en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject2-absorbing idealen_US
dc.subject2-absorbing primay idealen_US
dc.subject2-absorbing δ-primary idealen_US
dc.subjectΔ-primary idealen_US
dc.subjectΔ-semiprimary idealen_US
dc.title2-absorbing δ-semiprimary Ideals of Commutative Ringsen_US
dc.typearticleen_US
dc.relation.journalKyungpook Mathematical Journalen_US
dc.contributor.departmentHKÜ, Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0001-6194-656Xen_US
dc.identifier.volume61en_US
dc.identifier.issue4en_US
dc.identifier.startpage711en_US
dc.identifier.endpage725en_US
dc.contributor.institutionauthorYetkin-Çelikel, Ece
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record