A novel deep network architecture for reconstructing RGB facial images from thermal for face recognition
View/ Open
Access
info:eu-repo/semantics/embargoedAccessDate
2019Author
Anbarjafari, GholamrezaLitvin, Andre
Nasrollahi, Kamal
Escalera, Sergio
Ozcinar, Cagri
Moeslund, Thomas B.
Metadata
Show full item recordCitation
Litvin, A., Nasrollahi, K., Escalera, S., Ozcinar, C., Moeslund, T. B., & Anbarjafari, G. (September 30, 2019). A novel deep network architecture for reconstructing RGB facial images from thermal for face recognition. Multimedia Tools and Applications : an International Journal, 78, 18, 25259-25271.Abstract
This work proposes a fully convolutional network architecture for RGB face image generation from a given input thermal face image to be applied in face recognition scenarios. The proposed method is based on the FusionNet architecture and increases robustness against overfitting using dropout after bridge connections, randomised leaky ReLUs (RReLUs), and orthogonal regularization. Furthermore, we propose to use a decoding block with resize convolution instead of transposed convolution to improve final RGB face image generation. To validate our proposed network architecture, we train a face classifier and compare its face recognition rate on the reconstructed RGB images from the proposed architecture, to those when reconstructing images with the original FusionNet, as well as when using the original RGB images. As a result, we are introducing a new architecture which leads to a more accurate network.