Show simple item record

dc.contributor.authorAraci, Serkan
dc.contributor.authorHe, Yuan
dc.contributor.authorSrivastava, H. M.
dc.date.accessioned2019-11-14T13:41:00Z
dc.date.available2019-11-14T13:41:00Z
dc.date.issued2016-11-10
dc.identifier.citationYuan, H., Serkan, A., & HM, S. (November 10, 2016). Some new formulas for the products of the Apostol type polynomials. Advances in Difference Equations, 2016, 287.en_US
dc.identifier.issn1687-1847
dc.identifier.otherWOS:000391486700001
dc.identifier.urihttps://doi.org/10.1186/s13662-016-1014-0
dc.identifier.urihttps://hdl.handle.net/20.500.11782/761
dc.description.abstractIn the year 2014, Kim et al. computed a kind of new sums of the products of an arbitrary number of the classical Bernoulli and Euler polynomials by using the Euler basis for the vector space of polynomials of bounded degree. Inspired by their work, in this paper, we establish some new formulas for such a kind of sums of the products of an arbitrary number of the Apostol-Bernoulli, Euler, and Genocchi polynomials by making use of the generating function methods and summation transform techniques. The results derived here are generalizations of the corresponding known formulas involving the classical Bernoulli, Euler, and Genocchi polynomials.en_US
dc.language.isoengen_US
dc.publisherSPRINGEROPENen_US
dc.relation.isversionof10.1186/s13662-016-1014-0en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectApostol-Bernoulli polynomials; Apostol-Euler polynomials; Apostol-Genocchi polynomials; summation formulas; recurrence relationsen_US
dc.titleSome new formulas for the products of the Apostol type polynomialsen_US
dc.typearticleen_US
dc.relation.journalADVANCES IN DIFFERENCE EQUATIONSen_US
dc.contributor.departmentHKÜ, İktisadi, İdari ve Sosyal Bilimler Fakültesi, İktisat Bölümüen_US
dc.identifier.volume287en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record