• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@HKÜ
  • Fakülteler
  • Mühendislik Fakültesi
  • Elektrik Elektronik Mühendisliği
  • MF - EEM Makale Koleksiyonu
  • View Item
  •   DSpace@HKÜ
  • Fakülteler
  • Mühendislik Fakültesi
  • Elektrik Elektronik Mühendisliği
  • MF - EEM Makale Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

SBS management in Yb-fiber-amplifiers using multimode seeds and pulse-shaping

Thumbnail

View/Open

Makale Dosyası (4.309Mb)

Access

info:eu-repo/semantics/openAccess

Date

2014-08-25

Author

Gokhan, Fikri Serdar
Jolly, Alain
Bello, Ramatou
Dupriez, Pascal

Metadata

Show full item record

Citation

Jolly, A., Gökhan, F. S., Bello, R., & Dupriez, P. (August 25, 2014). SBS management in Yb-fiber-amplifiers using multimode seeds and pulse-shaping. Optics Express, 22, 17, 20326-20346.

Abstract

We present a comprehensive analysis of the technique of Longitudinal-Mode-Filling (LMF) to reduce Stimulated Brillouin Scattering (SBS) limitations in Ytterbium Doped Fibre Amplifiers (YDFA), for the generation of nanosecond, temporally shaped pulses. A basic Master-Oscillator-Power-Amplifier (MOPA) system, comprising an output YDFA with 10 mu m-core active fibre, is experienced for benchmarking purposes. Input pulse-shaping is operated thanks to direct current modulation in highly multimode laser-diode seeds, either based on the use of Distributed Feed-Back (DFB) or of a Fibre Bragg Grating (FBG). These seeds enable wavelength control. We verify the effectiveness of the combination of LMF, with appropriate mode spacing, in combination with natural chirp effects from the seed to control the SBS threshold in a broad range of output energies, from a few to some tens of mu J. These variations are discussed versus all the parameters of the laser system. In accordance with the proposal of a couple of basic principles and with the addition of gain saturation effects along the active fibre, we develop a full-vectorial numerical model. Fine fits between experimental results and theoretical expectations are demonstrated. The only limitation of the technique arises from broadband beating noise, which is analysed thanks to a simplified, but fully representative description to discuss the signal-to-noise ratio of the amplified pulses. This provides efficient tools for application to the design of robust and cost-effective MOPAs, aiming to the generation of finely shaped and energetic nanosecond pulses without the need for any additional electro-optics. (C) 2014 Optical Society of America

Source

OPTICS EXPRESS

Volume

22

Issue

17

URI

https://doi.org/10.1364/OE.22.020326
https://hdl.handle.net/20.500.11782/865

Collections

  • MF - EEM Makale Koleksiyonu [146]
  • Scopus İndeksli Yayınlar Koleksiyonu [649]
  • WoS İndeksli Yayınlar Koleksiyonu [857]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@HKÜ

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Hasan Kalyoncu Univesity || OAI-PMH ||

Hasan Kalyoncu Univesity, Gaziantep, Turkey
If you find any errors in content, please contact:

Creative Commons License
Hasan Kalyoncu Univesity Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@HKÜ: