• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@HKÜ
  • Fakülteler
  • Mühendislik Fakültesi
  • Elektrik Elektronik Mühendisliği
  • MF - EEM Makale Koleksiyonu
  • View Item
  •   DSpace@HKÜ
  • Fakülteler
  • Mühendislik Fakültesi
  • Elektrik Elektronik Mühendisliği
  • MF - EEM Makale Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automatic access control based on face and hand biometrics in a non-cooperative context

Thumbnail

View/Open

Makele Dosyası (698.1Kb)

Access

info:eu-repo/semantics/embargoedAccess

Date

2018

Author

Jahromi, Mohammad N.S.
Bonderup, Morten Bojesen
Asadi-Aghbolaghi, Maryam
Avots, Egils
Nasrollahi, Kamal
Escalera, Sérgio
Moeslund, Thomas Baltzer
Kasaei, Shohreh
Anbarjafari, Gholamreza

Metadata

Show full item record

Citation

Jahromi, M. N. S., Bonderup, M. B., Asadi-Aghbolaghi, M., Avots, E., Nasrollahi, K., Escalera, S., Kasaei, S., ... 2018 IEEE Winter Applications of Computer Vision Workshops (WACVW). (March 01, 2018). Automatic Access Control Based on Face and Hand Biometrics in a Non-cooperative Context. 28-36.

Abstract

Automatic access control systems (ACS) based on the human biometrics or physical tokens are widely employed in public and private areas. Yet these systems, in their conventional forms, are restricted to active interaction from the users. In scenarios where users are not cooperating with the system, these systems are challenged. Failure in cooperation with the biometric systems might be intentional or because the users are incapable of handling the interaction procedure with the biometric system or simply forget to cooperate with it, due to for example, illness like dementia. This work introduces a challenging bimodal database, including face and hand information of the users when they approach a door to open it by its handle in a noncooperative context. We have defined two (an easy and a challenging) protocols on how to use the database. We have reported results on many baseline methods, including deep learning techniques as well as conventional methods on the database. The obtained results show the merit of the proposed database and the challenging nature of access control with non-cooperative users.

Source

Proceedings - 2018 IEEE Winter Conference on Applications of Computer Vision Workshops, WACVW 2018

Volume

2018

URI

https://doi.org/10.1109/WACVW.2018.00009
https://hdl.handle.net/20.500.11782/977

Collections

  • MF - EEM Makale Koleksiyonu [146]
  • Scopus İndeksli Yayınlar Koleksiyonu [649]
  • WoS İndeksli Yayınlar Koleksiyonu [857]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@HKÜ

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Hasan Kalyoncu Univesity || OAI-PMH ||

Hasan Kalyoncu Univesity, Gaziantep, Turkey
If you find any errors in content, please contact:

Creative Commons License
Hasan Kalyoncu Univesity Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@HKÜ: