• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@HKÜ
  • Fakülteler
  • İktisadi İdari ve Sosyal Bilimler Fakültesi
  • İktisat
  • İİSBF - İKT Makale Koleksiyonu
  • View Item
  •   DSpace@HKÜ
  • Fakülteler
  • İktisadi İdari ve Sosyal Bilimler Fakültesi
  • İktisat
  • İİSBF - İKT Makale Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multifarious implicit summation formulae of Hermite-based poly-Daehee polynomials

Thumbnail

View/Open

Makele Dosyası (202.6Kb)

Access

info:eu-repo/semantics/embargoedAccess

Date

2018-03-01

Author

Khan, Waseem Ahmad
Nisar, Kottakkaran Sooppy
Duran, Ugur
Acikgoz, Mehmet
Araci, Serkan

Metadata

Show full item record

Citation

Khan, W. A., Nisar, K. S., Duran, U., Acikgoz, M., & Araci, S. (March 01, 2018). Multifarious Implicit Summation Formulae of Hermite-Based Poly-Daehee Polynomials. Applied Mathematics & Information Sciences. 12, 2, 305-310.

Abstract

In this paper, we introduce the generating function of Hermite-based poly-Daehee numbers and polynomials. By making use of this generating function, we investigate some new and interesting identities for the Hermite-based poly-Daehee numbers and polynomials including recurrence relations, addition property and correlations with poly-Bernoulli polynomials of second kind. We then derive diverse implicit summation formula for Hermite-based poly-Daehee numbers and polynomials by applying the series manipulation methods.

Source

Applied Mathematics and Information Sciences

Volume

12

Issue

2

URI

https://doi.org/10.18576/amis/120204
https://hdl.handle.net/20.500.11782/978

Collections

  • İİSBF - İKT Makale Koleksiyonu [171]
  • Scopus İndeksli Yayınlar Koleksiyonu [649]

Related items

Showing items related by title, author, creator and subject.

  • Some new identities for the Apostol-Bernoulli polynomials and the Apostol-Genocchi polynomials 

    Araci, Serkan; He, Yuan; Srivastava, H. M.; Acikgoz, Mehmet (ELSEVIER SCIENCE INC, 2015-07-01)
    In this paper, we present a further investigation for the Apostol-Bernoulh polynomials and the Apostol-Genocchi polynomials. By making use of the generating function methods and summation transform techniques, we establish ...
  • Some new formulae for genocchi numbers and polynomials involving bernoulli and euler polynomials 

    Araci S.; Acikgoz M.; Şen E. (Hindawi Publishing Corporation, 2014)
    We give some new formulae for product of two Genocchi polynomials including Euler polynomials and Bernoulli polynomials. Moreover, we derive some applications for Genocchi polynomials to study a matrix formulation. © 2014 ...
  • FINDING MIXED FAMILIES OF SPECIAL POLYNOMIALS ASSOCIATED WITH GOULD-HOPPER MATRIX POLYNOMIALS 

    Yasmin, Ghazala; Yasmin, Ghazala; Islahi, Hibah; Araci, Serkan (UNIV PRISHTINES, 2020)
    In this article, the general polynomials are taken as base with the Gould-Hopper matrix polynomials to introduce a family of 3-variable general-Gould-Hopper matrix polynomials (3VgGHMaP). These polynomials are framed within ...



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@HKÜ

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Hasan Kalyoncu Univesity || OAI-PMH ||

Hasan Kalyoncu Univesity, Gaziantep, Turkey
If you find any errors in content, please contact:

Creative Commons License
Hasan Kalyoncu Univesity Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@HKÜ: