Square-difference factor absorbing submodules of modules over commutative rings

Yükleniyor...
Küçük Resim

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Sciendo

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Let R be a commutative ring with identity and M an unitary Rmodule. Recently, in [5], Anderson, Badawi and Coykendalla defined a proper ideal I of R to be a square-difference factor absorbing ideal (sdf-absorbing ideal) of R if whenever a 2 − b 2 ∈ I for 0 6= a, b ∈ R, then a + b ∈ I or a − b ∈ I. Generally, this article is devoted to introduce and study square-difference factor absorbing submodules. A proper submodule N of M is called square-difference factor absorbing (sdf-absorbing) in M if whenever m ∈ M and a, b ∈ R\AnnR(m) such that (a 2 − b 2 )m ∈ N, then (a + b)m ∈ N or (a − b)m ∈ N. Many properties, examples and characterizations of sdf-absorbing submodules are introduced, especially in multiplication modules. Comparing this new class of submodules with classical prime submodules, we present new characterizations for von-Neumann regular modules in terms of sdf-absorbing submodules. Further characterizations of some special modules in which every nonzero proper submodule is sdf-absorbing are investigated. Finally, the sdf-absorbing submodules in amalgamated modules are studied

Açıklama

Anahtar Kelimeler

Prime submodule, classical prime submodule, square-difference factor absorbing ideal, square-difference factor absorbing submodule

Kaynak

Analele Stiintifice ale Universitatii Ovidius Constanta, Seria Matematica

WoS Q Değeri

Scopus Q Değeri

Cilt

33

Sayı

3

Künye

Celikel, Ece Yetkin & Khashan, Hani A. (1 October 2025). Square-difference factor absorbing submodules of modules over commutative rings. Sciendo. Analele Stiintifice ale Universitatii Ovidius Constanta, Seria Matematica (33,3, 41 - 65). https://doi.org/10.2478/auom-2025-0028.

Onay

İnceleme

Ekleyen

Referans Veren