Volumetric Histogram-Based Alzheimer's Disease Detection Using Support Vector Machine
| dc.contributor.author | Elshatoury, Heba | |
| dc.contributor.author | Avots, Egils | |
| dc.contributor.author | Anbarjafari, Gholamreza | |
| dc.date.accessioned | 2019-12-18T09:51:21Z | |
| dc.date.available | 2019-12-18T09:51:21Z | |
| dc.date.issued | 2019 | |
| dc.department | HKÜ, Mühendislik Fakültesi, Elektirik Elektronik Mühendisliği Bölümü | en_US |
| dc.description.abstract | In this research work, machine learning techniques are used to classify magnetic resonance imaging brain scans of people with Alzheimer's disease. This work deals with binary classification between Alzheimer's disease and cognitively normal. Supervised learning algorithms were used to train classifiers in which the accuracies are being compared. The database used is from The Alzheimer's Disease Neuroimaging Initiative (ADNI). Histogram is used for all slices of all images. Based on the highest performance, specific slices were selected for further examination. Majority voting and weighted voting is applied in which the accuracy is calculated and the best result is 69.5% for majority voting. | en_US |
| dc.identifier.citation | Elshatoury, H., Avots, E., Anbarjafari, G., & Alzheimer’s Disease Neuroimaging Initiative. (January 01, 2019). Volumetric Histogram-Based Alzheimer's Disease Detection Using Support Vector Machine. Journal of Alzheimer's Disease : Jad, 72, 2, 515-524. | en_US |
| dc.identifier.doi | 10.3233/JAD-190704 | |
| dc.identifier.endpage | 524 | en_US |
| dc.identifier.issn | 18758908 | |
| dc.identifier.issue | 2 | en_US |
| dc.identifier.pmid | 31609690 | |
| dc.identifier.scopus | 2-s2.0-85075814969 | |
| dc.identifier.scopusquality | Q1 | |
| dc.identifier.startpage | 515 | en_US |
| dc.identifier.uri | https://doi.org/10.3233/JAD-190704 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.11782/935 | |
| dc.identifier.volume | 72 | en_US |
| dc.identifier.wos | WOS:000497315800014 | |
| dc.identifier.wosquality | Q2 | |
| dc.indekslendigikaynak | Web of Science | |
| dc.indekslendigikaynak | Scopus | |
| dc.indekslendigikaynak | PubMed | |
| dc.language.iso | en | |
| dc.publisher | NLM (Medline) | en_US |
| dc.relation.ispartof | Journal of Alzheimer's disease : JAD | |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/embargoedAccess | en_US |
| dc.subject | Alzheimer’s disease | en_US |
| dc.subject | computer vision | en_US |
| dc.subject | feature extraction | en_US |
| dc.subject | individual grey matter | en_US |
| dc.subject | machine learning | en_US |
| dc.subject | magnetic resonance imaging | en_US |
| dc.title | Volumetric Histogram-Based Alzheimer's Disease Detection Using Support Vector Machine | |
| dc.type | Article |
Dosyalar
Lisans paketi
1 - 1 / 1
Yükleniyor...
- İsim:
- license.txt
- Boyut:
- 1.56 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama:










